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Renormalization group of probabilistic cellular automata with one absorbing state
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We apply a recently proposed dynamically driven renormalization group scheme to probabilistic cellular
automata having one absorbing state. We have found just one unstable fixed point with one relevant direction.
In the limit of small transition probability one of the cellular automata reduces to the contact process, revealing
that the cellular automata are in the same universality class as that process, as expected. Better numerical
results are obtained as the approximations for the stationary distribution are improved.
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I. INTRODUCTION The appropriate real space RG parameter space for these
nonequilibrium models is the space of the transition prob-
Recently, a general dynamical renormalization groupabilities, instead of being the space of coupling constants as
(RG) schemd 1] has been proposed in order to treat nonequi-is the case of equilibrium models, defined by a Hamiltonian.
librium critical phenomena. The method, called dynamicallyln the case of the models studied here, with one absorbing
driven renormalization groupfDDRG), has been applied to State, the RG should be appropriate to preserve the vacuum
self-organized critical phenomena, specifically to criticalState along the RG trajectory in this parameter space. By
height sandpile modelf2] and forest fire model§3]. Its using a block renormalization to treat properly the absorbing
phenomenological approach takes into account the nature §fate we have figured the value of the critical exponent cor-
self-organized systems through an attractive fixed point. Théesponding to the divergence of the spatial correlatian,
scheme also provides numerical values for the critical expousing three different approximations that consider correla-
nents that are close to the ones obtained using computéPns among clusters up to 1, 3, and 5 neighboring sites in
simulations. the lattice, respectively. Our best calculations give
The scheme consists in Coup"ng a real space RG schema =1.04=0.02, which is rather close to that obtained from
to a stationary condition that drives the RG group equation§umerical ~ simulations  reported in [8],  namely,
through the parameter space. The stationary conditions, iz, =1.067+0.005.
volving the stationary distribution, must always be approxi-
mated. While the authors used a stationary probability distri- Il. TWO-STATE MODEL
bution that neglects any correlation among different sites, i ) ) .
they have mentione@l1] the fact that using more refined _The first model is a or_le-dlmensu_)nal ceIIuIar_automaton
approximations should improve the values of the critical ex-With just two states per site. Each site can be either vacant,
ponents. o;=0, or occuplled 'by a_partlcler,i =1. At each time step the
While the DDRG scheme is quite general, self-organizecﬁtate of a certayn site wlll depend on!y on the previous states
critical systems are special since they have a well-define@f that same site and its nearest neighbors. We consider the
time scale separatiofulissipation events being instantaneousMoSt general transition probabilities that are homogeneous
with respect to the driving This prevents proliferation ef- a@nd symmetric in space. The transition probability
fects in the real space RG, making the calculation of criticaW(o|o’)  from state o'=(oy,03,...,04) to state
exponents easier. o=(01,05, ...,0) Will be given by the product
In this work, we implemented the DDRG scheme to an-
other class of systems, namely, the class of driven diffusive , , .,
systems with an absorbing stathe vacuum staje Due to W(alo ):i[[l w(ailoi_1,07,0.1), @
the presence of one absorbing state this class of systems is in
the same universality as the directed percolation mpt8l.  \yhereN is the number of sites and(ai|o_,, 0l ol q) is

More precisely we have considered one-dimensional probgpe gne-site transition probability given by the rules
bilistic cellular automata with one absorbing state. We have

treated two types of models. One of them is a two-state|« [000| 001 | 100 | 101 | 010 | Ol11 | 110 | 111
probabilistic cellular automatofthat can be interpreted as
directed percolation in two dimensionthat includes, inthe |0 1 (1 =P/l =pi{l—=p2| pa Pa Pa Ps
limit of small transition probabilities, as particular cases,
continuous-time processes with one absorbing state, such ¢

N

110 m 21 p2 |[L—pa|l —ps|l—psil —ps

the contact mode|6] and others[7]. The other one is a )
four-state probabilistic cellular automaton that includes the

model introduced by Grassberger and de la T¢8kas a The rulew(0|000)=1 implies that the vacuum state is
particular case. indeed an absorbing state. Wheg~ p,= p; we say that the
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annihilation of particles is spontaneous. Suppose, moreovecpntrary, its left nearest neighbor is not a particle of tfpe

that p,=2p,; and that the parameters;, and p; are very and its right nearest neighbor is not of type the site re-

small. In this case the system remains most of the time in itenains empty. This last rule implies that the state with all

previous state. We expect, therefore, that the properties afites empty is an absorbing state.

the present two-state model, in the linpii—0 andp3;—0, Transition probability W(o|o") from state

with the ratio p,/p3=X\ fixed, be identical to the contact ¢'= (0,05, ...,0\) to stateoc= (04,0, ...,0n) Can be

process with a catalytic transition rate equakt@and a tran-  written as the product

sition rate for spontaneous annihilation equal to unity. If

p,=p1, and taking the same limit, the properties will be N , .,

identical to a model introduced by Dickm&modelA) [7]. W(‘T|‘T,):£[l w(oi|oi_y,07,07.1), ©)
The model is represented by a set of five parameters,

P1. P2, P3, P4, andps, which constitutes, as we shall see, whereN is the number of sites of the lattice. The one-site

the RG parameter space. The RG scheme will be constructgghnsition probabilityw(ci|o|_;, o] o, ;) is written in the

in a way that the RG trajectory will be confined to this space.appendix.

In order to apply the RG scheme we enlarge the space of
Ill. FOUR-STATE MODEL parameters but preserve the existence of the absorbing state.
Demanding also that the rules should be homogeneous in

The Grassbgrger and de I‘."‘ Torr_e moﬁﬁﬂl!s dgfmgd as space and invariant by exchanging the st&eandL, the
follows. Each site of a one-dimensional lattice is either oc-

. - | ;o : )
cupied by one particle or it is void. At a certain time step the_transmon probabilityw(oi|oi_,07 ,0{,,) will be defined
) in the most general way by 59 parameters. We call such a
state of the system may be defined by the vector A
= _ . probabilistic cellular automaton the four-state model.
o=(041,05,03, ...,0y), Where ;=0 or 1 according to
whether the sité is vacant or occupied. In each time step, all

sites are updated in two stag€$) In the first stage each IV. RENORMALIZATION SCHEME

particle is spontaneously annihilated with probabikity(2) Here we use a real space RG scheffe-11], which

In the second stage every surviving particle will generaterenormalizes the transition probability. The succession of
with probability p, a new (unique particle, which will be  RG transformations corresponds to a trajectory in the space
placed in one of its nearest neighboring sites, randomly chospanned by the parameters that defidésThe scheme we
sen. In other words, for each site with a particle, we chose §ge is an implementation of the DDRG-3] and is accom-
neighboring site with probabilityp/2. If the site was origi- plished by transforming cells df sites into a cell of just one
nally void it becomes occupied, and if it was occupied itsjte. To treat the vacuum state properly any cell with at least
remains as such. We have modified slightly the originalone particle renormalizes into an occupied site. Only cells
model by introducing the paramefer The original model of  with no particles renormalize into a vacant site.

Grassberger and de la Torre is recast wherl. Let R(7|o) be a condition probability of stategiven the

Defined in this way, the transition prObabI|IW(0'|o") stateo with the fo”owing properties:
from a states’ to another stater cannot be written as a

product of independent transition probabilities associated to

each sitew(oi|o{_,,0{,0{,,), as in ordinary cellular au- R(r|o)=0, ET R(7lo)=1. 4
tomata. However, if we enlarge the number of states in each

site by introducing three types of particles, then it is possiblerhe vectoro= (04,05, .. .,0n) represents the state of a
to map the model into a four-state cellular automaton. Thisystem with N degrees of freedom and the vector
mapping is outlined in the Appendix. r=(71,75, ..., Tn/) FEpresents the state of the renormalized

The four-state probabilistic cellular automaton equivalentsystem withN’ =N/b degrees of freedom, whetg is, the
to the Grassberger and de la Torre model is defined as fokjze of the renormalization block.

lows. Each site of a one-dimensional lattice can be either | et p (o,6') be the probability of occurrence of state
empty €), 0;=0, or occupied by a neutral particlN], ;' at a given time and state at n time steps later, that is
o;=1, or by a rightist particle R), o;=2, or by a leftist
particle (L), ;= 3. At each time step, every site of the lat- P.(o,0")=W"(a|c")P(a"), (5
tice is independently updated according to the rules.
(1) If the site is occupied by one particle of any tyNe  whereP(o) is the stationary probability distribution, which
R, or L, then one out of four possible events will take place:satisfies the equation
(@ The particle is annihilated, that is, the site becomes
empty, with probabilityc, or (b) becomes a particle of type _ n / /
N with probability a, or (c) becomes a particle of typR P(a) ;‘ Wialo")P(a) ©
with probabilityb/2, or (d) becomes a particle of tyde with
probability b/2. Herea=(1—c)(1—p) andb=(1-c)p. for any value ofn, whereW"(o|c’) is the transition prob-
(2) In case the site is emptgtateE) one has to look to its ~ ability from stateo’ to stateo in n time steps. Similarly, for
neighboring sites(a) If its left neighbor is typeR or its right  the renormalized system, |I&(7,7') be the probability of
neighbor is of typd_, the site remains a8 with probability = the occurrence of staté at a given time and state at one
¢, becomes\ with probability a, becomesR with probabil-  time step later. The RG transformation is obtained by de-
ity b/2, or becomed. with probability b/2. (b) If, on the  manding thaf9]
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FIG. 1. Diagram showing the blocking
s scheme procedure. Numbers correspond to the in-
dexes used in Eq19).
I / RG @
- , o ’ Assuming that the renormalized transition probability can
P(r,7)=2 , R(rlo)R(7'|a")Pn(a,0’), (7))  also be written as a product of independent transition prob-

o abilities, that is,

from which it follows that N’

- W(r|7')= W(T T, T, Tt 1), 12
B()=3 R(<'|0")P(o) ® (r]7") kl;[l (T Tk 15 Tk Ths 1) (12
. one can write the RG equations that relate the old one-site
since o i ) b
transition probabilityw(oi|o{_,,0{ ,0{,,) to the new one
- e W(rd iy, 7 7).
P(7 )IZT P(7,7). 9 We have used only renormalization cells with stze 2

and choserr in the form

To get the desired renormalized transition probability

~ N/2
W(7|7") we use

R(T|0)—k1:[1 R(Tk|02k—1,0'zk), (13
W(7|7')= ~(T1T ), (10 ;
(7)) with

and Egs(5), (7), and(8). We obtain[1]

R(Td0ak-1,020=0, X R(7Joa1,020=1.
Tk

2 2 R(rlo)R(7' o)W (ala")P(a") (14)
W(r|7")= SR(7' |0 ) P(o”) To preserve the absorbing nature of the vacuum state we
o’ have chosemR with the properties
11

. . . . R(0|0,0=1 15
This equation, however, is not properly a transformation be- (0100 (19
tween the transition probabilitie®/ and W, since the yet gnd
unknown stationary probability?(o) appears in the right
hand side of Eq(11). However, if we use the balance equa- R(0|op—1,02¢) =0, (16)

tion (6) for P(o) then a closure condition for the renormal-

ization group is obtained. The closure condition plays thewhenevero,,_,+# 0, or o5 #0.

role of the driving condition that forces the system to be in  For the two-site model we used the following values:

the stationary state at each step of the transformation. In this

sense the present DDRG may be thought of as a renormalR(0|00)=1, R(1|01)=1, R(1]10=1, R(1|11)=1.

ization of the stationary state. (17
At each state of the transformation the transition probabil-

ity W always describes an irreversible process so that th&he other matrix elements &t are zero.

corresponding stationary solutio®(¢) obtained from the For the four-site model we used the following values:

closure conditior{6) will not be relateda priori, to a Hamil-

tonian, that would be the case if the process obeyed detailed®(0/000=1, R(1|0)=1, R(1|10=1, R(1]1D)=1,
balance. In this way the present RG scheme is distinct from
the ordinary real space RG used in equilibrium systems inR(2(02)=1, R(1[03)=1, R(1]200=1, R(3|30)=1,

which the parameters of the Hamiltonian are renormalized. (18)
The closure relation(6), however, cannot actually be

solved so that approximations should be used. Here we havér(2|12)=1, R(1][13)=1, R(1|21)=1, R(3[31)=1,
used three different approximations that consider correla-
tions among clusters up to 1, 3, and 5 neighboring sites. R(2|32=1/2, R(3|32=1/2, R(2|22)=1,

Equation(11) together with a given approximation provides

then a well-defined RG transformatioi— W. R(1]23)=1.
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The other matrix elements d® are zero. The first matrix V. RENORMALIZATION ALGORITHM

element has been chosen in order to preserve the absorbing

nature of the vacuum state and the rest of the elements were

assigned bearing in mind the physical picture thaRapar- The temporal coarse graining will be done using two time
ticle will give rise to a new particle to the right in the next steps, that isp=2. Using the equations of the previous sec-
time step, while arL particle will generate a new particle to tion we can write down the equation that relateso w for

the left (N particles will not generate new particjes the casen=2 (see Fig. 1 It is given by
W(ry| 70,73, 7)= X R(71|0102)T(01,0507, ... ,019p(07, ... ,012 72,73, 74), (19

010207 -:012

where

T(01,0507,08,09,010,011,010) = 2 W(01|03,04,05)\W(03|04,05,06)W(03|07,08,07)
0'30'40'50'6
XW(04|0g,09,010W(05|0g,010,01)W(06| 010,011,012 (20

and

R(75|07,08)R(73|09,010 R(74| 011,012 P(07,08,09,010,011,012)

p(07,08,09,010,011,019 T2,T3,T4) = . (21

5(72,73,74)

where

P(72,73,7)= 2, R(7|o7,08)R(73| 09,010 R(74| 011,01 P(07,08,09,010,011,012). (22
g7:°012

Here the subscripts refer to the site numbers appearing iapproximations that consider correlations up to clusters of
Fig. 1. three sites and five sites, respectivgly].

In order to solve the system of equatiofi®)—(22) one Due to the number of terms involved in Eq$9)—(22) it
must resort to approximate methods to estimate the stations not possible to determine analytically the fixed point of the
ary weightsP(o7, ...,0q5). The simplest approximation, transformation. So, we have performed it numerically, using
sometimes known as a simple mean field approximationinitial values for the transition probabilities corresponding to
consists in neglecting correlations among different sites  the model of interest. In the case of the two-state model we
start with w(o;i|o{_,,0{,0{,1) given by Eq. (2) with
ps=pa=p3 andp,=2p;. In the case of the four-state model
P(a7,....o)=]] P(oy, (23)  we start withw(oi|o]_;,0],0!,,) corresponding to the
=7 Grassberger and de la Torre model, wits 1.

In each iteration of the RG, given the set of parameters
w, one has to find the stationary solution for

12

whereP(o;) is the solution of

P(o;, ...,019). This has been done by iterating the time
p _ W =) =) p . evolutl(_)n equation for the moddusing one of the three
(02) 02;30'4 (01]020300)P(02)P(03)P(0) approximationsuntil reaching convergence. For the one-site

(29 approximation, given by Eq(24), 10* iterations were
enough. As approximations are refined equations become
However, correlations are actually taken into account inhighly nonlinear, and for the five-site approximation at least

the geometrical aspects of the blocking procedure. In thid( iterations are needed.
way, one obtains nonclassical critical exponents. Given a
blocking prescription, the value of the critical exponents VI. RESULTS
should improve as correlations are taken into account in the
stationary probability distribution. In order to verify how im-  For the four-state model, the RG equations behaved in the
portant the changes will be, we have used three differenfollowing way. For small values o€, the set of transition
approximations for the stationary distribution. The first onematrix elements flows towards an attractive fixed point char-
being Egs(23) and(24), while the other two are mean field acterized byc=0, and a lattice full of particles. On the con-
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better approximations only for the two-state model. The
value found using the three-site approximation was
v, =0.98+0.01, whereas the value found in the five-site ap-
proximation wasv, =1.04+0.02, which is rather close to
the one calculated from numerical simulations. In Table | we
show the coordinates of the unstable fixed point for the three
approximations, as well as the corresponding eigenvalue

Another advantage in using better approximations is the
improvements one obtains in the critical values of nonuni-
versal parameters. We have considered the following initial
conditions for the two-state modelps=p,=p; and
p>=2p,. By varyingp, andps; we have obtained the criti-
cal values\. of the ratioA =p,/p3 as shown in Table I,
’ which, in the limitp,— 0, should be compared with the criti-
0.0 0.2 04 06 0.8 1.0 cal value of the contact process=3.299[13].

x Reasoning along this line, one may wonder why not use

]Ihe stationary distribution directly from a computer simula-

FIG. 2. Projection of two trajectories in the parameter space o . e . .
the four-state model in terms of two of these parameters.non of the model. Making large statistics over configurations

x=1-W(0|101) andy=w(0|010). Each trajectory reaches a dif- N the stationary regime, one should be able to accurately

ferent fixed point. The inset shows an enlargement around the nor?—StimaFe the probabilities of the CJUSters_ appga_ring pn_the left
trivial fixed point. hand side of Eq921) and(22). While the idea is in principle

right, one cannot overcome in practice the huge amount of
time needed to obtain values that are accurate enough. Slight
fluctuations in the estimated values will make trajectories
randomly shift their destination towards one of the two at-
ractive fixed points, depending on the random seed used in
he simulation. This effect takes place even before any tra-
the representative point of the parameter set spends a lo 'ect(_)ry 's able to reach the Iine_a rized domain of the transfor-
time near an unstable point before it moves towards any af. atmn aroun d the L_Jnstable pomt. A way to_ de(_:reasg fluctua-
L ) . o ions is by increasing the size of the lattice in which one
the two attractive fixed points. Figure 2 shgws a projection 0Performs the simulation. But the precision one gains does not
two trajectories in the parameter space in terms of two o row faster than-1/JN, whereN is the size of the lattice
these parametersi(0/010) and +-w(0|101). 9 ’ '

In this way, only one relevant parameter is found. Since
we are dealing only with stationary properties of the model it
is reasonable to assume that this parameter is associated withwe have applied a real space renormalization group
the divergence of the spatial correlation length and not withscheme to a class of driven diffusive probabilistic cellular
the temporal correlation length. So, figuring the eigenvalueautomata having one absorbing state. Two models have been
A associated to that parameter we ggt=In2/InA. The considered. One of them is a two-state model that reduces to
value measured numerically is =0.93+0.005. the contact process in the limit of small transition probabili-

From computer simulations results reported8hone can  ties. The two-state model can also be interpreted as a generic
obtain v, =1.067+0.005, and the critical value of is directed percolation in two dimensions. The other is a four-
C,=0.279. The discrepancy between the two results istate model that includes the model introduced by Grass-
mainly due to the poorness of the one-site approximation. Byerger and de la Torre in a study related to the contact pro-
increasing the order of approximation the results gets bettecess. We have found, in the RG space of parameters, just one
as we shall see in the case of the two-site model. nontrivial unstable fixed point with one relevant direction.

We have corroborated that, as one would expect, th&@he existence of just this unique fixed point reveals that the
value of v, for the simpler two-state model and one-site probabilistic cellular automata with one absorbing state be-
approximation is identical as the one previously found. Sincdong to the same universality class as the directed percolation
for refined approximations of three and five sites, numericabnd the contact process, as expected.
computations become too imposing, we have used these two The implementation of the RG scheme required the cal-

0.8 [

06 |

04 r

e
~

0.58 L
0.81 0.83

trary, for values ofc high enough, the RG equations are
driven to a different attractive fixed point, this time charac-
terized byc=1 and a lattice without particles. In this case
we used only the one-site approximation and found a critic
value ofc given byc,=0.3568. Starting around this value

VIl. CONCLUSION

TABLE I. Coordinatesp,, ps, P3, P4, and ps of the unstable fixed point for the three approximations
together with the corresponding eigenvalue related to the unstable direction.

Approximation P1 P2 Ps Pa Ps A
One site 0.22794 0.40381 0.26780 0.22116 0.18245 2.105
Three site 0.12107 0.22750 0.14761 0.07870 0.03140 2.025

Five site 0.07107 0.16233 0.07330 0.04783 0.01933 1.950
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TABLE Il. Critical values\ of the ratioA =p,/p; for several w;(0[1)=c, w;(1]1)=1-c,
values ofp, for the two-state model. Each line corresponds to a
given level of approximation. wy(1/0)=0, w,(0]0)=1. (A3)
P2 1 0.1 0.01 0.001

Second stage

\c(one-site approx. 1.483 1.982 1.998 2.000 In this stage B—C) every particle decides whether it

\¢(three-site approx. 1.735 3.016 3.165 3.179  will generate new particles either to the left or to the right in
o the next step. Each occupied site will be labeled according to
A(five-site approy. 1738 3070 3213 3231  jig decision. A particle that decides not to generate particles
will be labeled by the number 1. A particle that decides to
generate another one to the right will be labeled by the num-
culation of the stationary probability distribution, which was per 2 and a particle that decides to generate a new particle to
performed in several levels of approximation. By increasinghe left will be labeled by the number 3. A state of types
the number of the cluster size used in the approximationshen defined by the vectoo=(o;,05, ... o), Where

improved results were obtained not only for the critical ex-4,=0,1,2,3, so that the transition probabilit/,(C|B) of
ponenty, but also for the nonuniversal critical quantities. the transition fromB to C is given by

N
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APPENDIX w2 D)=7, w3[D)=73,

The Grassberger and de la Torre model is a stochastiGy,(0|0)=1, w,(1|0)=0, w,(2|0)=0, w(3|0)=0.
process in which at each time step particles are being created (A5)
and annihilated. We imagine the process as a sequence of
statesA, A’, A", A"', ... ,each one being given by a vector Third stage
n=(91,7m2, --.,mN) Where =0 or 1 according to

whether sitei is vacant or occupied by a particle. We may  In this state C—A’), particles are effectively created.
think of each transition, sap—A’, as being composed of Each occupied site remains occupied. Each vacant site be-
three stages with two intermediate staisand C, to be ~ comes occupied if the site at the rigeft) is occupied by a
defined shortly, so that the whole stochastic process corrdarticle of type 3(2).

sponds to a sequende, B, C, A’, B’, C', A", B", C", A configuration of typeA’ is expressed again in terms of
A" ... We will then write the transition probability the two state variables;;=0 or 1, and the transition prob-
W(A’'|A) from stateA to A’ as given by ability W,(A’|C) of the transition fromC to A’ is given by

N
Ws(A'|C>=w3<n’|o>=iljlw3<n{|mfl,oi,ai+1>,

W(A'[A)= 2, > W5(A’|C)W,(C[B)W:(B|A),
B C (AB)

(A1)
where the transition probabilitws(1|o;_1,0i,0i,1) to the

) staten =1 is given by
whereW;(A’|C), W,(C|B), andW,(B|A) are the interme-

diate transition probabilities related to the three stages. ws(1lo_q1,07,0i:1)=1, (A7)

if o;#0, for any value ofo;_; andoj,,, and
First stage

In the first stage A—B) of the Grassberger and de la w(1]oi-1,0,0741)=1 (A8)

Torre model, each particle is annihilated with probabitity if
so that the probabilityV, (B|A) of the transition fromA to
B is given by

oi_1=2 org;;1=23. In other casew/3(1|ci_1,0i,0i.1)
vanishes. The transition probability;(0|c;_1,0i,0i,1) to
the staten =0 is just given by

N

Wi (BIA) =Wy ('[9 =]T wi(7|m),  (A2) W3(0[0i-1,01,0141) = 1-Ws(1] 01,071,071 +1). o
=1

It is easy to check thatV(A’|A)=W(%'|n) cannot be
where written as a product of the independent transition probability
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of each site as in an ordinary cellular automaton. Howevergellular automaton whose rules are defined by E444),

the transition probabilityW,(C’'|C)=W,(o'|o) from state
C to stateC’ can. Indeed, from

W(C'|C)=2 2 W,(C'|B")W;(B'|A")W,(A'[C),
B’ A’
(A10)

that is from

We(o'|o) =2 2 Waolo'[7")Wa( | 7")Wa( 7’| 0)
n 7

(A11)
we get
N
We(o'lo)=2 2 L1 wal ol wal7])
7 n
Xws( 7 |oi-1,07,0141), (A12)
which can be written in the form
N
vu(owa>:llywuﬁ|ahlxn,0H4>, (A13)

where

w(o!|oi_1,0 a0'i+1)22// Z wo(o! |7 )wi( 7| 7))
7 7;

XWa( i |oi-1,07,0141). (Ald)

The Grassberger and de la Torre process can then be

viewed as a sequence of sta@sC’, C”, C"”, ... ,each one
being given by a vectosr= (04,05, . ..,0) Wherea;=0,
1, 2, or 3 according to whether siteis either vacant or

(A3), (A5), and (A7) and (A8). From these equations we

may  write down the transition probability
w(o{|oi_1,0i,0i.1) in the form
w(0lo{_y,0{ ,0{,1)=Cc,
w(llo{_y,0{ 0,1 =a,
(Al5)

W(2|0'i/,1,0'i, 'O-i,+l):b/2'
w(3lo{_q,0{,0{.1)=bl2

if of+#0, independently of the states taken &y_,, and
o{.,. For the case where{ =0, and eitherog{_;=2 or
o{,,=3, one has

w(0|a{_1,0,0{,)=c,

w(1|o{_;,0,0(,,)=a,
(A16)

w(2|o{_1,0,0{.,)=bl2,
W(3|0'i’_1,0,0'i'+1)=b/2.

And finally, wheng{ =0, ando{_,#2 andoj,,#3,
w(0lo{_1,0,0{,7)=1,

w( 1| Uilflio’o-i,Jr 1)=0,
(A17)

W(2| O'i,_l,o,(Ti,+l) = 0,

W(3| O'i,,l,O,O'i'Jrl) =0.

occupied by a particle that does not generate another particle
(neutral particle or occupied by a particle that generatesThe parameters and b are related top by a=(1—-p)(1

another one to the riglia rightist particlg, or occupied by a
particle that generates another one to the (efteftist par-

—c) andb=p(1-c).
The rulew(0]0,0,0)=1 implies that the state with all sites

ticle). Therefore, it is equivalent to an ordinary four-statevacant is indeed an absorbing state.
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