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Renormalization group of probabilistic cellular automata with one absorbing state

M. J. de Oliveira and J. E. Satulovsky
Universidade de Sa˜o Paulo, Instituto de Fı´sica, Caixa Postal 66318, 05315-970 Sa˜o Paulo, SP, Brazil

~Received 5 November 1996; revised manuscript received 17 January 1997!

We apply a recently proposed dynamically driven renormalization group scheme to probabilistic cellular
automata having one absorbing state. We have found just one unstable fixed point with one relevant direction.
In the limit of small transition probability one of the cellular automata reduces to the contact process, revealing
that the cellular automata are in the same universality class as that process, as expected. Better numerical
results are obtained as the approximations for the stationary distribution are improved.
@S1063-651X~97!07603-4#

PACS number~s!: 05.70.Ln, 64.60.Ht, 64.60.Ak, 05.40.1j
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I. INTRODUCTION

Recently, a general dynamical renormalization gro
~RG! scheme@1# has been proposed in order to treat noneq
librium critical phenomena. The method, called dynamica
driven renormalization group~DDRG!, has been applied to
self-organized critical phenomena, specifically to critic
height sandpile models@2# and forest fire models@3#. Its
phenomenological approach takes into account the natur
self-organized systems through an attractive fixed point.
scheme also provides numerical values for the critical ex
nents that are close to the ones obtained using comp
simulations.

The scheme consists in coupling a real space RG sch
to a stationary condition that drives the RG group equati
through the parameter space. The stationary conditions
volving the stationary distribution, must always be appro
mated. While the authors used a stationary probability dis
bution that neglects any correlation among different sit
they have mentioned@1# the fact that using more refine
approximations should improve the values of the critical
ponents.

While the DDRG scheme is quite general, self-organiz
critical systems are special since they have a well-defi
time scale separation~dissipation events being instantaneo
with respect to the driving!. This prevents proliferation ef
fects in the real space RG, making the calculation of criti
exponents easier.

In this work, we implemented the DDRG scheme to a
other class of systems, namely, the class of driven diffus
systems with an absorbing state~the vacuum state!. Due to
the presence of one absorbing state this class of systems
the same universality as the directed percolation model@4,5#.
More precisely we have considered one-dimensional pro
bilistic cellular automata with one absorbing state. We ha
treated two types of models. One of them is a two-st
probabilistic cellular automaton~that can be interpreted a
directed percolation in two dimensions! that includes, in the
limit of small transition probabilities, as particular case
continuous-time processes with one absorbing state, suc
the contact model@6# and others@7#. The other one is a
four-state probabilistic cellular automaton that includes
model introduced by Grassberger and de la Torre@8# as a
particular case.
551063-651X/97/55~6!/6377~7!/$10.00
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The appropriate real space RG parameter space for t
nonequilibrium models is the space of the transition pro
abilities, instead of being the space of coupling constants
is the case of equilibrium models, defined by a Hamiltoni
In the case of the models studied here, with one absorb
state, the RG should be appropriate to preserve the vac
state along the RG trajectory in this parameter space.
using a block renormalization to treat properly the absorb
state we have figured the value of the critical exponent c
responding to the divergence of the spatial correlation,n' ,
using three different approximations that consider corre
tions among clusters up to 1, 3, and 5 neighboring sites
the lattice, respectively. Our best calculations gi
n'51.0460.02, which is rather close to that obtained fro
numerical simulations reported in @8#, namely,
n'51.06760.005.

II. TWO-STATE MODEL

The first model is a one-dimensional cellular automa
with just two states per site. Each site can be either vac
s i50, or occupied by a particle,s i51. At each time step the
state of a certain site will depend only on the previous sta
of that same site and its nearest neighbors. We conside
most general transition probabilities that are homogene
and symmetric in space. The transition probabil
W(sus8) from state s85(s18 ,s28 , . . . ,sN8 ) to state
s5(s1 ,s2 , . . . ,sN) will be given by the product

W~sus8!5)
i51

N

w~s i us i218 ,s i8 ,s i118 !, ~1!

whereN is the number of sites andw(s i us i218 ,s i8 ,s i118 ) is
the one-site transition probability given by the rules

~2!

The rulew(0u000)51 implies that the vacuum state
indeed an absorbing state. Whenp55p45p3 we say that the
6377 © 1997 The American Physical Society
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annihilation of particles is spontaneous. Suppose, moreo
that p252p1 and that the parametersp1 and p3 are very
small. In this case the system remains most of the time in
previous state. We expect, therefore, that the propertie
the present two-state model, in the limitp2→0 andp3→0,
with the ratio p2 /p35l fixed, be identical to the contac
process with a catalytic transition rate equal tol and a tran-
sition rate for spontaneous annihilation equal to unity.
p25p1 , and taking the same limit, the properties will b
identical to a model introduced by Dickman~modelA) @7#.

The model is represented by a set of five paramet
p1 , p2 , p3 , p4 , andp5 , which constitutes, as we shall se
the RG parameter space. The RG scheme will be constru
in a way that the RG trajectory will be confined to this spa

III. FOUR-STATE MODEL

The Grassberger and de la Torre model@8# is defined as
follows. Each site of a one-dimensional lattice is either o
cupied by one particle or it is void. At a certain time step t
state of the system may be defined by the vec
s5(s1 ,s2 ,s3 , . . . ,sN), where s i50 or 1 according to
whether the sitei is vacant or occupied. In each time step,
sites are updated in two stages.~1! In the first stage each
particle is spontaneously annihilated with probabilityc. ~2!
In the second stage every surviving particle will genera
with probability p, a new ~unique! particle, which will be
placed in one of its nearest neighboring sites, randomly c
sen. In other words, for each site with a particle, we chos
neighboring site with probabilityp/2. If the site was origi-
nally void it becomes occupied, and if it was occupied
remains as such. We have modified slightly the origi
model by introducing the parameterp. The original model of
Grassberger and de la Torre is recast whenp51.

Defined in this way, the transition probabilityW(sus8)
from a states8 to another states cannot be written as a
product of independent transition probabilities associated
each sitew(s i us i218 ,s i8 ,s i118 ), as in ordinary cellular au-
tomata. However, if we enlarge the number of states in e
site by introducing three types of particles, then it is possi
to map the model into a four-state cellular automaton. T
mapping is outlined in the Appendix.

The four-state probabilistic cellular automaton equival
to the Grassberger and de la Torre model is defined as
lows. Each site of a one-dimensional lattice can be eit
empty (E), s i50, or occupied by a neutral particle (N),
s i51, or by a rightist particle (R), s i52, or by a leftist
particle (L), s i53. At each time step, every site of the la
tice is independently updated according to the rules.

~1! If the site is occupied by one particle of any typeN,
R, or L, then one out of four possible events will take plac
~a! The particle is annihilated, that is, the site becom
empty, with probabilityc, or ~b! becomes a particle of typ
N with probability a, or ~c! becomes a particle of typeR
with probabilityb/2, or ~d! becomes a particle of typeL with
probabilityb/2. Herea5(12c)(12p) andb5(12c)p.

~2! In case the site is empty~stateE) one has to look to its
neighboring sites.~a! If its left neighbor is typeR or its right
neighbor is of typeL, the site remains asE with probability
c, becomesN with probabilitya, becomesR with probabil-
ity b/2, or becomesL with probability b/2. ~b! If, on the
er,

ts
of

f

s,

ed
.

-

r

l

,

o-
a

t
l

to

h
e
is

t
l-
r

:
s

contrary, its left nearest neighbor is not a particle of typeR
and its right nearest neighbor is not of typeL, the site re-
mains empty. This last rule implies that the state with
sites empty is an absorbing state.

Transition probability W(sus8) from state
s85(s18 ,s28 , . . . ,sN8 ) to states5(s1 ,s2 , . . . ,sN) can be
written as the product

W~sus8!5)
i51

N

w~s i us i218 ,s i8 ,s i118 !, ~3!

whereN is the number of sites of the lattice. The one-s
transition probabilityw(s i us i218 ,s i8 ,s i118 ) is written in the
Appendix.

In order to apply the RG scheme we enlarge the spac
parameters but preserve the existence of the absorbing s
Demanding also that the rules should be homogeneou
space and invariant by exchanging the statesR and L, the
transition probabilityw(s i us i218 ,s i8 ,s i118 ) will be defined
in the most general way by 59 parameters. We call suc
probabilistic cellular automaton the four-state model.

IV. RENORMALIZATION SCHEME

Here we use a real space RG scheme@9–11#, which
renormalizes the transition probabilityW. The succession o
RG transformations corresponds to a trajectory in the sp
spanned by the parameters that definesW. The scheme we
use is an implementation of the DDRG@1–3# and is accom-
plished by transforming cells ofb sites into a cell of just one
site. To treat the vacuum state properly any cell with at le
one particle renormalizes into an occupied site. Only ce
with no particles renormalize into a vacant site.

LetR(tus) be a condition probability of statet given the
states with the following properties:

R~tus!>0, (
t
R~tus!51. ~4!

The vectors5(s1 ,s2 , . . . ,sN) represents the state of
system with N degrees of freedom and the vect
t5(t1 ,t2 , . . . ,tN8) represents the state of the renormaliz
system withN85N/b degrees of freedom, whereb is, the
size of the renormalization block.

Let Pn(s,s8) be the probability of occurrence of sta
s8 at a given time and states at n time steps later, that is

Pn~s,s8!5Wn~sus8!P~s8!, ~5!

whereP(s) is the stationary probability distribution, whic
satisfies the equation

P~s!5(
s8

Wn~sus8!P~s8! ~6!

for any value ofn, whereWn(sus8) is the transition prob-
ability from states8 to states in n time steps. Similarly, for
the renormalized system, letP̃(t,t8) be the probability of
the occurrence of statet8 at a given time and statet at one
time step later. The RG transformation is obtained by
manding that@9#
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FIG. 1. Diagram showing the blocking
scheme procedure. Numbers correspond to the
dexes used in Eq.~19!.
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P̃~t,t8!5(
s

(
s8
R~tus!R~t8us8!Pn~s,s8!, ~7!

from which it follows that

P̃~t8!5(
s8
R~t8us8!P~s8! ~8!

since

P̃~t8!5(
t

P̃~t,t8!. ~9!

To get the desired renormalized transition probabi
W̃(tut8) we use

W̃~tut8!5
P̃~t,t8!

P̃~t8!
, ~10!

and Eqs.~5!, ~7!, and~8!. We obtain@1#

W̃~tut8!5

(
s
(
s8
R~tus!R~t8us8!Wn~sus8!P~s8!

(
s8
R~t8us8!P~s8!

.

~11!

This equation, however, is not properly a transformation
tween the transition probabilitiesW and W̃, since the yet
unknown stationary probabilityP(s) appears in the righ
hand side of Eq.~11!. However, if we use the balance equ
tion ~6! for P(s) then a closure condition for the renorma
ization group is obtained. The closure condition plays
role of the driving condition that forces the system to be
the stationary state at each step of the transformation. In
sense the present DDRG may be thought of as a renor
ization of the stationary state.

At each state of the transformation the transition proba
ity W always describes an irreversible process so that
corresponding stationary solutionP(s) obtained from the
closure condition~6! will not be related,a priori, to a Hamil-
tonian, that would be the case if the process obeyed deta
balance. In this way the present RG scheme is distinct fr
the ordinary real space RG used in equilibrium systems
which the parameters of the Hamiltonian are renormalize

The closure relation~6!, however, cannot actually b
solved so that approximations should be used. Here we h
used three different approximations that consider corr
tions among clusters up to 1, 3, and 5 neighboring si
Equation~11! together with a given approximation provide
then a well-defined RG transformationW→W̃.
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Assuming that the renormalized transition probability c
also be written as a product of independent transition pr
abilities, that is,

W̃~tut8!5)
k51

N8

w̃~tkutk218 ,tk8 ,tk118 !, ~12!

one can write the RG equations that relate the old one-
transition probabilityw(s i us i218 ,s i8 ,s i118 ) to the new one
w̃(tkutk218 ,tk8 ,tk118 ).

We have used only renormalization cells with sizeb52
and chosenR in the form

R~tus!5)
k51

N/2

R~tkus2k21 ,s2k!, ~13!

with

R~tkus2k21 ,s2k!>0, (
tk

R~tkus2k21 ,s2k!51.

~14!

To preserve the absorbing nature of the vacuum state
have chosenR with the properties

R~0u0,0!51 ~15!

and

R~0us2k21 ,s2k!50, ~16!

whenevers2k21Þ0, or s2kÞ0.
For the two-site model we used the following values:

R~0u00!51, R~1u01!51, R~1u10!51, R~1u11!51.
~17!

The other matrix elements ofR are zero.
For the four-site model we used the following values:

R~0u00!51, R~1u01!51, R~1u10!51, R~1u11!51,

R~2u02!51, R~1u03!51, R~1u20!51, R~3u30!51,

~18!

R~2u12!51, R~1u13!51, R~1u21!51, R~3u31!51,

R~2u32!51/2, R~3u32!51/2, R~2u22!51,

R~1u23!51.
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The other matrix elements ofR are zero. The first matrix
element has been chosen in order to preserve the abso
nature of the vacuum state and the rest of the elements
assigned bearing in mind the physical picture that anR par-
ticle will give rise to a new particle to the right in the ne
time step, while anL particle will generate a new particle t
the left (N particles will not generate new particles!.
g
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V. RENORMALIZATION ALGORITHM

The temporal coarse graining will be done using two tim
steps, that is,n52. Using the equations of the previous se
tion we can write down the equation that relatesw to w̃ for
the casen52 ~see Fig. 1!. It is given by
w̃~t1ut2 ,t3 ,t4!5 (
s1s2s7•••s12

R~t1us1s2!T~s1 ,s2us7 , . . . ,s12!r~s7 , . . . ,s12ut2 ,t3 ,t4!, ~19!

where

T~s1 ,s2us7 ,s8 ,s9 ,s10,s11,s12!5 (
s3s4s5s6

w~s1us3 ,s4 ,s5!w~s2us4 ,s5 ,s6!w~s3us7 ,s8 ,s9!

3w~s4us8 ,s9 ,s10!w~s5us9 ,s10,s11!w~s6us10,s11,s12! ~20!

and

r~s7 ,s8 ,s9 ,s10,s11,s12ut2 ,t3 ,t4!5
R~t2us7 ,s8!R~t3us9 ,s10!R~t4us11,s12!P~s7 ,s8 ,s9 ,s10,s11,s12!

P̃~t2 ,t3 ,t4!
, ~21!

where

P̃~t2 ,t3 ,t4!5 (
s7•••s12

R~t2us7 ,s8!R~t3us9 ,s10!R~t4us11,s12!P~s7 ,s8 ,s9 ,s10,s11,s12!. ~22!
of

he
ing
to
we

el

ers
r
e

ite

me
st

the

ar-
-

Here the subscripts refer to the site numbers appearin
Fig. 1.

In order to solve the system of equations~19!–~22! one
must resort to approximate methods to estimate the sta
ary weightsP(s7 , . . . ,s12). The simplest approximation
sometimes known as a simple mean field approximat
consists in neglecting correlations among different sites

P~s7 , . . . ,s12!5)
i57

12

P~s i !, ~23!

whereP(s i) is the solution of

P~s1!5 (
s2s3s4

w~s1us2s3s4!P~s2!P~s3!P~s4!.

~24!

However, correlations are actually taken into account
the geometrical aspects of the blocking procedure. In
way, one obtains nonclassical critical exponents. Give
blocking prescription, the value of the critical exponen
should improve as correlations are taken into account in
stationary probability distribution. In order to verify how im
portant the changes will be, we have used three differ
approximations for the stationary distribution. The first o
being Eqs.~23! and~24!, while the other two are mean fiel
in

n-

n,

n
is
a

e

nt

approximations that consider correlations up to clusters
three sites and five sites, respectively@12#.

Due to the number of terms involved in Eqs.~19!–~22! it
is not possible to determine analytically the fixed point of t
transformation. So, we have performed it numerically, us
initial values for the transition probabilities corresponding
the model of interest. In the case of the two-state model
start with w(s i us i218 ,s i8 ,s i118 ) given by Eq. ~2! with
p55p45p3 andp252p1. In the case of the four-state mod
we start with w(s i us i218 ,s i8 ,s i118 ) corresponding to the
Grassberger and de la Torre model, withp51.

In each iteration of the RG, given the set of paramet
w̃, one has to find the stationary solution fo
P(s7 , . . . ,s12). This has been done by iterating the tim
evolution equation for the model~using one of the three
approximations! until reaching convergence. For the one-s
approximation, given by Eq.~24!, 104 iterations were
enough. As approximations are refined equations beco
highly nonlinear, and for the five-site approximation at lea
105 iterations are needed.

VI. RESULTS

For the four-state model, the RG equations behaved in
following way. For small values ofc, the set of transition
matrix elements flows towards an attractive fixed point ch
acterized byc50, and a lattice full of particles. On the con
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trary, for values ofc high enough, the RG equations a
driven to a different attractive fixed point, this time chara
terized byc51 and a lattice without particles. In this cas
we used only the one-site approximation and found a crit
value ofc given byccr50.3568. Starting around this valu
the representative point of the parameter set spends a
time near an unstable point before it moves towards any
the two attractive fixed points. Figure 2 shows a projection
two trajectories in the parameter space in terms of two
these parameters:w(0u010) and 12w(0u101).

In this way, only one relevant parameter is found. Sin
we are dealing only with stationary properties of the mode
is reasonable to assume that this parameter is associated
the divergence of the spatial correlation length and not w
the temporal correlation length. So, figuring the eigenva
L associated to that parameter we getn'5 ln2/lnL. The
value measured numerically isn'50.9360.005.

From computer simulations results reported in@8# one can
obtain n'51.06760.005, and the critical value ofc is
ccr50.279. The discrepancy between the two results
mainly due to the poorness of the one-site approximation.
increasing the order of approximation the results gets be
as we shall see in the case of the two-site model.

We have corroborated that, as one would expect,
value of n' for the simpler two-state model and one-s
approximation is identical as the one previously found. Sin
for refined approximations of three and five sites, numer
computations become too imposing, we have used these

FIG. 2. Projection of two trajectories in the parameter space
the four-state model in terms of two of these paramete
x512w̃(0u101) andy5w̃(0u010). Each trajectory reaches a di
ferent fixed point. The inset shows an enlargement around the
trivial fixed point.
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better approximations only for the two-state model. T
value found using the three-site approximation w
n'50.9860.01, whereas the value found in the five-site a
proximation wasn'51.0460.02, which is rather close to
the one calculated from numerical simulations. In Table I
show the coordinates of the unstable fixed point for the th
approximations, as well as the corresponding eigenvalueL.

Another advantage in using better approximations is
improvements one obtains in the critical values of nonu
versal parameters. We have considered the following ini
conditions for the two-state model:p55p45p3 and
p252p1 . By varyingp2 andp3 we have obtained the criti
cal valueslc of the ratiol5p2 /p3 as shown in Table II,
which, in the limitp2→0, should be compared with the crit
cal value of the contact processlc53.299@13#.

Reasoning along this line, one may wonder why not u
the stationary distribution directly from a computer simu
tion of the model. Making large statistics over configuratio
in the stationary regime, one should be able to accura
estimate the probabilities of the clusters appearing on the
hand side of Eqs.~21! and~22!. While the idea is in principle
right, one cannot overcome in practice the huge amoun
time needed to obtain values that are accurate enough. S
fluctuations in the estimated values will make trajector
randomly shift their destination towards one of the two
tractive fixed points, depending on the random seed use
the simulation. This effect takes place even before any
jectory is able to reach the linearized domain of the trans
mation around the unstable point. A way to decrease fluc
tions is by increasing the size of the lattice in which o
performs the simulation. But the precision one gains does
grow faster than;1/AN, whereN is the size of the lattice.

VII. CONCLUSION

We have applied a real space renormalization gro
scheme to a class of driven diffusive probabilistic cellu
automata having one absorbing state. Two models have b
considered. One of them is a two-state model that reduce
the contact process in the limit of small transition probab
ties. The two-state model can also be interpreted as a gen
directed percolation in two dimensions. The other is a fo
state model that includes the model introduced by Gra
berger and de la Torre in a study related to the contact p
cess. We have found, in the RG space of parameters, jus
nontrivial unstable fixed point with one relevant directio
The existence of just this unique fixed point reveals that
probabilistic cellular automata with one absorbing state
long to the same universality class as the directed percola
and the contact process, as expected.

The implementation of the RG scheme required the c
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TABLE I. Coordinatesp1, p2, p3, p4, andp5 of the unstable fixed point for the three approximatio
together with the corresponding eigenvalue related to the unstable direction.

Approximation p1 p2 p3 p4 p5 L

One site 0.22794 0.40381 0.26780 0.22116 0.18245 2.10

Three site 0.12107 0.22750 0.14761 0.07870 0.03140 2.02

Five site 0.07107 0.16233 0.07330 0.04783 0.01933 1.95
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6382 55M. J. de OLIVEIRA AND J. E. SATULOVSKY
culation of the stationary probability distribution, which wa
performed in several levels of approximation. By increas
the number of the cluster size used in the approximat
improved results were obtained not only for the critical e
ponentn' but also for the nonuniversal critical quantities.
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APPENDIX

The Grassberger and de la Torre model is a stocha
process in which at each time step particles are being cre
and annihilated. We imagine the process as a sequenc
statesA, A8, A9, A98, . . . , each one being given by a vecto
h5(h1 ,h2 , . . . ,hN) where h i50 or 1 according to
whether sitei is vacant or occupied by a particle. We ma
think of each transition, sayA→A8, as being composed o
three stages with two intermediate statesB and C, to be
defined shortly, so that the whole stochastic process co
sponds to a sequenceA, B, C, A8, B8, C8, A9, B9, C9,
A98, . . . . We will then write the transition probability
W(A8uA) from stateA to A8 as given by

W~A8uA!5(
B

(
C

W3~A8uC!W2~CuB!W1~BuA!,

~A1!

whereW3(A8uC), W2(CuB), andW1(BuA) are the interme-
diate transition probabilities related to the three stages.

First stage

In the first stage (A→B) of the Grassberger and de
Torre model, each particle is annihilated with probabilityc,
so that the probabilityW1(BuA) of the transition fromA to
B is given by

W1~BuA!5W1~h9uh!5)
i51

N

w1~h i9uh i !, ~A2!

where

TABLE II. Critical valueslc of the ratiol5p2 /p3 for several
values ofp2 for the two-state model. Each line corresponds to
given level of approximation.

p2 1 0.1 0.01 0.001

lc~one-site approx.! 1.483 1.982 1.998 2.000

lc~three-site approx.! 1.735 3.016 3.165 3.179

lc~five-site approx.! 1.738 3.070 3.213 3.231
g
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w1~0u1!5c, w1~1u1!512c,

w1~1u0!50, w1~0u0!51. ~A3!

Second stage

In this stage (B→C) every particle decides whether
will generate new particles either to the left or to the right
the next step. Each occupied site will be labeled accordin
its decision. A particle that decides not to generate partic
will be labeled by the number 1. A particle that decides
generate another one to the right will be labeled by the nu
ber 2 and a particle that decides to generate a new partic
the left will be labeled by the number 3. A state of typeC is
then defined by the vectors5(s1 ,s2 , . . . ,sN), where
s i50,1,2,3, so that the transition probabilityW2(CuB) of
the transition fromB to C is given by

W2~CuB!5W2~suh9!5)
i51

N

w2~s i uh i9!, ~A4!

where

w2~0u1!50, w2~1u1!512p,

w2~2u1!5
p

2
, w2~3u1!5

p

2
,

w2~0u0!51, w2~1u0!50, w2~2u0!50, w2~3u0!50.
~A5!

Third stage

In this state (C→A8), particles are effectively created
Each occupied site remains occupied. Each vacant site
comes occupied if the site at the right~left! is occupied by a
particle of type 3(2).

A configuration of typeA8 is expressed again in terms o
the two state variables,h i50 or 1, and the transition prob
ability W2(A8uC) of the transition fromC to A8 is given by

W3~A8uC!5W3~h8us!5)
i51

N

w3~h i8us i21 ,s i ,s i11!,

~A6!

where the transition probabilityw3(1us i21 ,s i ,s i11) to the
stateh i851 is given by

w3~1us i21 ,s i ,s i11!51, ~A7!

if s iÞ0, for any value ofs i21 ands i11 , and

w3~1us i21,0,s i11!51 ~A8!

if s i2152 or s i1153. In other casesw3(1us i21 ,s i ,s i11)
vanishes. The transition probabilityw3(0us i21 ,s i ,s i11) to
the stateh i850 is just given by

w3~0us i21 ,s i ,s i11!512w3~1us i21 ,s i ,s i11!.
~A9!

It is easy to check thatW(A8uA)5W(h8uh) cannot be
written as a product of the independent transition probabi
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of each site as in an ordinary cellular automaton. Howev
the transition probabilityWc(C8uC)5Wc(s8us) from state
C to stateC8 can. Indeed, from

Wc~C8uC!5(
B8

(
A8

W2~C8uB8!W1~B8uA8!W3~A8uC!,

~A10!

that is from

Wc~s8us!5(
h9

(
h8

W2~s8uh9!W1~h9uh8!W3~h8us!

~A11!

we get

Wc~s8us!5(
h9

(
h8

)
i51

N

w2~s i8uh i9!w1~h i9uh i8!

3w3~h i8us i21 ,s i ,s i11!, ~A12!

which can be written in the form

Wc~s8us!5)
i51

N

w~s i8us i21 ,s i ,s i11!, ~A13!

where

w~s i8us i21 ,s i ,s i11!5(
h i9

(
h i8

w2~s i8uh i9!w1~h i9uh i8!

3w3~h i8us i21 ,s i ,s i11!. ~A14!

The Grassberger and de la Torre process can then
viewed as a sequence of statesC, C8, C9, C-, . . . ,each one
being given by a vectors5(s1 ,s2 , . . . ,sN) wheres i50,
1, 2, or 3 according to whether sitei is either vacant or
occupied by a particle that does not generate another par
~neutral particle!, or occupied by a particle that generat
another one to the right~a rightist particle!, or occupied by a
particle that generates another one to the left~a leftist par-
ticle!. Therefore, it is equivalent to an ordinary four-sta
r,

be

cle

cellular automaton whose rules are defined by Eqs.~A14!,
~A3!, ~A5!, and ~A7! and ~A8!. From these equations w
may write down the transition probability
w(s i8us i21 ,s i ,s i11) in the form

w~0us i218 ,s i8 ,s i118 !5c,

w~1us i218 ,s i8 ,s i118 !5a,

~A15!

w~2us i218 ,s i8 ,s i118 !5b/2,

w~3us i218 ,s i8 ,s i118 !5b/2

if s i8Þ0, independently of the states taken bys i218 , and
s i118 . For the case wheres i850, and eithers i218 52 or
s i118 53, one has

w~0us i218 ,0,s i118 !5c,

w~1us i218 ,0,s i118 !5a,

~A16!

w~2us i218 ,0,s i118 !5b/2,

w~3us i218 ,0,s i118 !5b/2.

And finally, whens i850, ands i218 Þ2 ands i118 Þ3,

w~0us i218 ,0,s i118 !51,

w~1us i218 ,0,s i118 !50,

~A17!

w~2us i218 ,0,s i118 !50,

w~3us i218 ,0,s i118 !50.

The parametersa and b are related top by a5(12p)(1
2c) andb5p(12c).

The rulew(0u0,0,0)51 implies that the state with all site
vacant is indeed an absorbing state.
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